<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
font-size:11.0pt;
font-family:"Calibri",sans-serif;
mso-ligatures:standardcontextual;
mso-fareast-language:EN-US;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
p.MsoPlainText, li.MsoPlainText, div.MsoPlainText
{mso-style-priority:99;
mso-style-link:"Plain Text Char";
margin:0in;
font-size:11.0pt;
font-family:"Calibri",sans-serif;
mso-ligatures:standardcontextual;
mso-fareast-language:EN-US;}
span.PlainTextChar
{mso-style-name:"Plain Text Char";
mso-style-priority:99;
mso-style-link:"Plain Text";
font-family:"Calibri",sans-serif;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="DE" link="#0563C1" vlink="#954F72" style="word-wrap:break-word">
<div class="WordSection1">
<p class="MsoPlainText"><span lang="EN-GB">***Apologies for cross-posting***<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">Dear colleagues,<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">We are excited to announce the program of the GESIS Fall Seminar in Computational Social Science 2023: Join us at the GESIS premises in Mannheim from 11 – 29 September and choose from a variety of introductory and
advanced courses on computational social science methods!<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">The GESIS Fall Seminar targets social scientists, data scientists, and researchers in the digital humanities who want to collect and analyze data from the web, social media, or digital text archives. Its courses are
taught by both GESIS and international experts and cover methods and techniques of working with digital behavioral data ("big data"). Participants can pick from nine week-long courses, including introductory courses on Computational Social Science, Web Data
Collection, Big Data Management, or Machine Learning, and more specialized topics such as Automated Image and Video Data Analysis, Deep Learning for Advanced Computational Text Analysis, or Network Analysis. Lectures in each course are complemented by hands-on
exercises giving participants the opportunity to apply these methods to data. All courses are held in English.<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><b><span lang="EN-GB">Week 1 (11 – 15 September)<o:p></o:p></span></b></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><a href="https://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0xA28FC9B6141C46659993D16F76CDDC81">Introduction to Computational Social Science with R</a><o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">Aleksandra Urman, University of Zurich; Max Pellert, University of Mannheim<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><a href="https://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0x10B7F599A78A430899D69DC39C14F621">Introduction to Computational Social Science with Python</a><o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">Milena Tsvetkova, London School of Economics; Patrick Gildersleve, London School of Economics<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><a href="https://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0xAD9B75D7B1924EF280EC288984898493">Big Data and Computation for Social Data Science</a><o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">Akitaka Matsuo, University of Essex; David (Yen-Chieh) Liao, Aarhus University<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><b><span lang="EN-GB">Week 2 (18 – 22 September)<o:p></o:p></span></b></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><a href="https://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0x72388B266D7A48C98886DFA6C16089BF">Automated Web Data Collection with R</a><o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">Allison Koh, Hertie School of Governance; Hauke Licht, University of Cologne<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><a href="https://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0x428CC87C985440C695B86BA777535CB4">Automated Web Data Collection with Python</a><o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">Felix Soldner, GESIS Cologne; Jun Sun, GESIS Cologne; Leon Fröhling, GESIS Cologne<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><a href="https://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0x1C221B3409844A5682D4BB6AB53D470D">Automated Image and Video Data Analysis with Python</a><o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">Andreu Casas, Vrije Universiteit Amsterdam; Felicia Loecherbach, New York University<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><b><span lang="EN-GB">Week 3 (25 – 29 September)<o:p></o:p></span></b></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><a href="https://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0x0E15EE73F46043069631395E0C0190C2">Social Network Analysis with R</a><o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">Michał Bojanowski, Kozminski University and Universitat Autònoma de Barcelona<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><a href="https://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0xCCF089463A984E93A172700D57DA845F">Introduction to Machine Learning for Text Analysis with Python</a><o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">Damian Trilling, University of Amsterdam; Anne Kroon, University of Amsterdam<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><a href="https://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0xA07F19FB18CA4F1D8E2DED9DECDE8685">From Embeddings to Transformers: Advanced Text Analysis with Python</a><o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">Hauke Licht, University of Cologne; Jennifer Victoria Scurrell, ETH Zurich<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-US">For those without any prior experience in R or Python and those who’d like a refresher, we’re additionally offering two pre-courses, “<a href="https://training.gesis.org/?site=pDetails&child=full&pID=0x6CA4A250062240A1A6BED0FCABC77F76">Introduction
to R</a>” and “<a href="https://training.gesis.org/?site=pDetails&child=full&pID=0x7FEDC6C590644569BB73AC13AE1CD933">Introduction to Python</a>” (three days, online) in the week before the start of the Fall Seminar.<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-US"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-US">All courses are stand-alone and can be booked separately – feel free to mix and match to build your own personal Fall Seminar experience that perfectly suits your needs and interests. There is no registration deadline,
but places are limited and allocated on a first-come, first-served basis. To secure a place in the course(s) of your choice, we strongly recommend that you register early.
<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-US"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-US">Thanks to our cooperation with the a.r.t.e.s. Graduate School for the Humanities at the University of Cologne, participants of the GESIS Fall Seminar can obtain 2 ECTS credit points per one-week course.<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-US"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-US">For detailed course descriptions and registration, please visit our
<a href="https://www.gesis.org/en/gesis-training/what-we-offer/fall-seminar-in-computational-social-science">
website</a> and sign up <a href="https://training.gesis.org/?query=%20AND%20%20AND%20Fall%20Seminar%20AND%20%20AND%20%20AND%20%20AND%20">
here</a>!<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-US"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-US">We also regularly offer courses on computational social science, programming, and digital behavioral data in our
<a href="https://training.gesis.org/?site=pOverview&cat=Workshop">workshop program</a> (many of them online). Upcoming workshops, for example, include
<a href="https://training.gesis.org/?site=pDetails&child=full&pID=0x61D72CBE8F0E439DA97FAC6D072A6447">
Advanced R Programming</a>, <a href="https://training.gesis.org/?site=pDetails&child=full&pID=0x8298CEAADF6C457B8FBE9EE3FC092E47">
Automated Reports & Co with Quarto and Markdown</a>, <a href="https://training.gesis.org/?site=pDetails&child=full&pID=0x0D17F8F738B14E0991504DBF8823A002">
Interactive Data Analysis with Shiny</a>, and <a href="https://training.gesis.org/?site=pDetails&child=full&pID=0xACEC1E11C9DB4992BC5E06F3A76AD509">
Social Media-Based Field Experiments</a>.<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">Thank you for forwarding this announcement to other interested parties.<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">Best wishes<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">The GESIS Fall Seminar team<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">---<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB"><o:p> </o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">GESIS - Leibniz-Institute for the Social Sciences GESIS Fall Seminar in Computational Social Science<o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">email: <a href="mailto:fallseminar@gesis.org">
fallseminar@gesis.org</a> <o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">web: <a href="http://www.gesis.org/fallseminar">
www.gesis.org/fallseminar</a><o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">facebook: <a href="https://www.facebook.com/GESISTraining">
https://www.facebook.com/GESISTraining</a><o:p></o:p></span></p>
<p class="MsoPlainText"><span lang="EN-GB">twitter: <a href="https://twitter.com/gesistraining">
https://twitter.com/gesistraining</a><o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-GB"><o:p> </o:p></span></p>
</div>
</body>
</html>